Sustainability with Evonik

Bio renewable content of additives for ink

Dr. Kai Yang

Head of Applied Research & Technology, Printing inks, Americas

Chicago Printing Ink Production Club 2024

Agenda

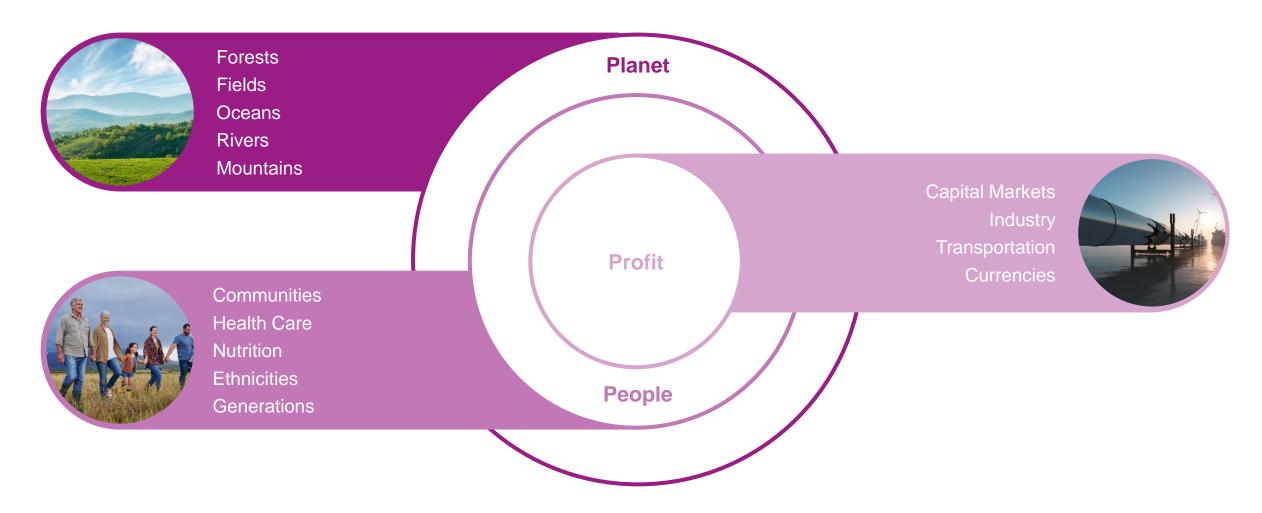
1	What does sustainability mean?	3
2	How could we achieve our sustainaibility goals?	11
3	Renewable, recycle resource and mass balance approach	17
4	Evonik offering to improve your sustainbility	22

Agenda

1	What does sustainability mean?	3
2	How could we achieve our sustainaibility goals?	11
3	Renewable, recycle resource and mass balance approach	17
4	Evonik offering to improve your sustainbility	22

Sustainability is a broad wellbeing concept

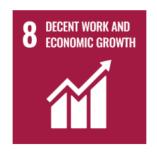
The concept was created to encompas more than only the environment.



Sustainability is a threefold risk mitigation concept: planet, people and profit

How to standardize and create global alignment on sustainability?

U.N. Member countries agreed to the SDG, the global framework to steer and track sustainable goals.



SBTi - Science Based Target Initiative (CO₂ emission reduction goals)

Customers are increasingly demanding for certification. Almost 20% of Evonik's revenue is with SBTi committed customers

SBTi unites targets CDP, UN Global Compact, World Resource Institute and WWF

Partner organizations

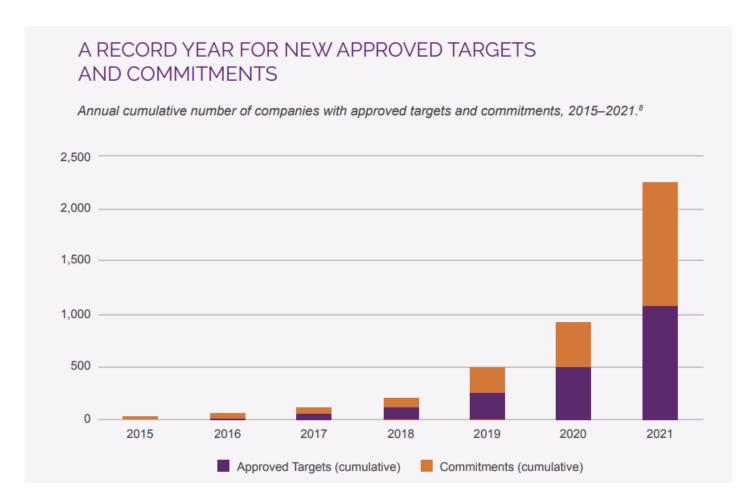
What is SBTi?

- Only global initiative that addresses the 1.5°/2° C climate targets of the Paris Climate Agreement
- Measures independently companies and organizational climate goals
- Creates transparency and validity for a global standard set of measurement

What are the SBTi Goals?

Industries CO₂ goals to reduce scope 1 & 2 emissions including supply chain measures to reduce scope 3.

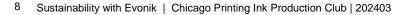
- 1.5°C target: 4.2% p.a. reduction of Scope 1 & 2 CO₂ emissions
- 2°C target: 2.5% p.a. reduction of Scope 1 & 2 CO₂ emissions
- 1.23% p.a. reductions of Scope 3 CO₂ emissions including suppliers


Why are our customers interested in SBTi?

- Increasing number of customers are committing to SBTi targets
- SBTis request them to involve their suppliers
- Their clients are asking for SBTi commitment

Note: A list of companies committed to the SBTi can be found at https://sciencebasedtargets.org/target-dashboard

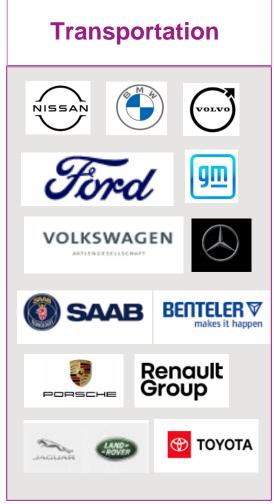
More than 5000 companies are engaged with SBTi to take action to reduce CO₂ emissions. The number of companies more than doubled since 2021.


YTD 2023: 5234 companies listed in SBTi

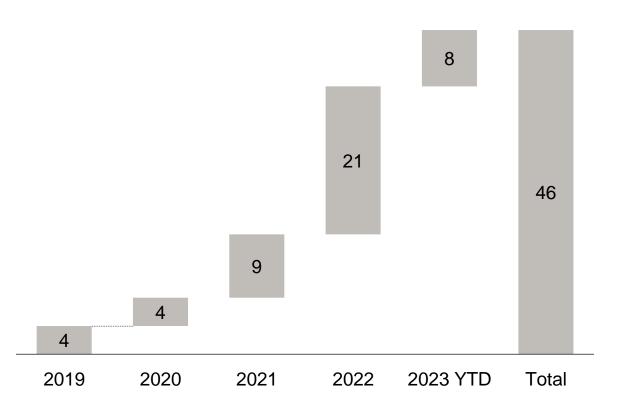
Companies report that adopting a science-based target:

- Boosts profitability
- Improves investor confidence
- Drives innovation
- Reduces regulatory uncertainty
- Strengthens brand reputation

Source: https://sciencebasedtargets.org/resources/files/SBTiProgressReport2021.pdf



Many companies in market segments that CAD supports have expressed SBTi goals



⁹ Sustainability with Evonik | Chicago Printing Ink Production Club | 202403

Coatings and Inks Formulators

The list of coatings and inks formulators have substantially increased in 2022.

New SBTi commitments of coating and ink producers

Example companies

Agenda

1	What does sustainability mean?	3
2	How could we achieve our sustainaibility goals?	11
3	Renewable, recycle resource and mass balance approach	17
4	Evonik offering to improve your sustainbility	22

Footprint: NEXTGEN Technologies Across all Four Sustainability Focus Areas Measurable set of KPIs in place. Climate neutral by 2050.

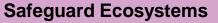
Footprint reduction

Targets 2030¹

Fight Climate Change

-25%

Scope 1 & 2 emissions


Drive Circularity


Specific² production waste

-3%

Specific² freshwater intake

-20%

Other emissions to air

- 100% renewable sourced electricity
- -11% Scope 3 emissions
- Be climate neutral for all emission scopes by 2050
- Reduce amount of nonhazardous waste sent to landfill
- Significant increase in biobased and circular raw materials
- Site-specific action plans for water-stress production sites
- 100% RSPO MB³ certified palm oil and derivatives as of 2025
- Maintain low risk exposure to "Hazardous Chemicals of High Concern"

^{1.} reference year 2021; 2. Corresponding to the production volume; 3. RSPO MB: Roundtable on Sustainable Palm Oil Mass Balance

Evonik well positioned in independent ratings¹

1https://corporate.evonik.com/en/sustainability/sustainable-investment/sustainability-ratings-rankings

Definitions: Footprint and Handprint

Footprint = negative impacts

covers all negative environmental and social impacts during manufacturing and shipping of the product:

- Emissions from purchased raw materials
- Emissions from utilities used in plants (steam, electricity or natural gas)
- Emissions from transport and logistics
- Emissions caused by waste

Handprint = positive impacts

Describes an improvement between an established and an improved solution

- Energy and material savings by process additives
- Extended lifetime of objects, e. g. constructions, household hardware, electrical devices
- Substitution of a disputed component in a formulation

A handprint is the difference between an established and the improved condition of a single environmental or social effect

The Seven Handprint Effects for Additives

Safe use

Reduction and replacement of hazardous components in our products

3 GOOD HEALTH AND WELL-BEING

Ensuring compliance with labels and regulations

Less deaths and illnesses from hazardous chemicals

VOC reduction

Solutions to enable VOC reduced paints, coatings and inks

Production efficiency

Make grinding, formulation and application more efficient

Transformation to efficient and environmental sound technologies

Durability

Solutions for long lasting and appealing paints and coatings

Sustainable feedstocks

Increased use of biobased and recycled feedstocks

Circular solutions

Solutions for deinking and enhanced paint recycling

Sub goals: 12.2, 12.5:

Renewable materials, waste reduction by reuse and recycle

Enabling sustainability goals

We help customers by minimizing our environmental footprint and by maximizing their handprint. We organize our portfolio around 7 sustainability benefits to support customers achieve their goals.

Raw materials

Evonik Production

Formulation & Application

End use

Disposal/ Recycling

Minimize the footprint (Evonik's impact on environment)

Sustainable feedstocks

Renewable energy

Process optimization

Maximize the handprint (sustainability benefits)

(Downstream impact on the environment)

Production efficiency

Circular solutions

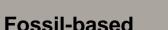
VOC reduction

Durability

Safe use

Note: Circular solutions – Evonik is currently working on R&D projects to develop coatings & inks additives that either have recycled content or can enable better options for product end-of-life.

Agenda


1	What does sustainability mean?	3
2	How could we achieve our sustainaibility goals?	11
3	Renewable, recycle resource and mass balance approach	17
4	Evonik offering to improve your sustainbility	22

Renewable and recycled feedstock make it possible to produce more sustainable products

Type of Feedstock

Primary

BIO-based

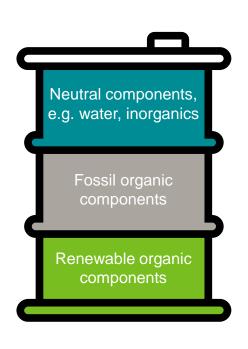
Virgin fossil raw materials

Virgin agricultural raw materials

Secondary

Waste materials of biological origin

Recycled



Waste materials of non-biological origin

Determination of the biobased content

Product composition

Material balance, wet

- Calculation of the renewables content via a material input/output balance
- Inclusion of all components, also water
- No analytics

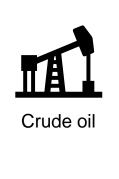
Material balance, dry

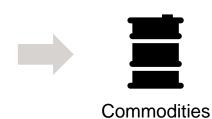
- Calculation of the renewables content via a material input/output balance
- Inclusion of all solid components, exclusion of water
- No analytics
- Standard: EN 16785-2 2018

Radiocarbon method

- Based on decay of 14C isotopes to 12C isotopes
- ASTM 6866-21

Component type	Share
Water	20%
Other neutral comp.	10%
Fossil organic	30%
Renewable organic	40%
Bio-content	40%


Component type	Share
Water	20%
Other neutral comp.	10%
Fossil organic	30%
Renewable organic	40%
Bio-content	50%


Component type	Share
Water	20%
Other neutral comp.	10%
Fossil organic	30%
Renewable organic	40%
Renewable carbon content	57%

Currently CAD uses fossil based and segregated biobased raw materials for production of additives and resins

Fossil value chain

100% fossil carbon

- Global coverage of production assets
- Constant quality levels
- Limited options for carbon footprint reduction

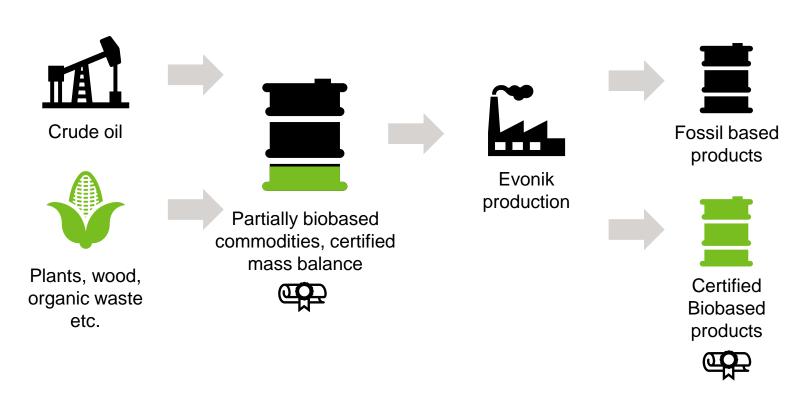
Plants, wood etc.

Biobased derivatives

Evonik

production

Evonik production


Up to 100% biobased carbon

- Segregated value chain
- Qualification of raw materials necessary
- Local coverage
- (Severe) price premiums
- Limited availability
- Food vs. non food conflict

The mass balance approach combines the use of established materials flows with a high potential for fossil carbon reduction

Balance approach Mass I

- No change in quality of material flows
- Certification as method to calculate biobased share and for external credibility
- Available for an increasing number of carbon based commodities
- Certification of own production necessary
- Considerable price premiums Low risk of greenwashing due to certification

Agenda

1	What does sustainability mean?	3
2	How could we achieve our sustainaibility goals?	11
3	Renewable, recycle resource and mass balance approach	17
4	Evonik offering to improve your sustainbility	22

2. Enabling sustainability goals

1.3 Toy & children safety compliance

We have a broad portfolio that supports several different sustainability goals

1. Safe use

2. Labels & compliance

3. VOC reduction

2.2 Eco-labeling & regulatory support

- 3.1 Near-zero-VOC coalescing surfactant
- 3.2 Broad low-VOC portfolio
- 3.3 Powder coatings

4. Production efficiency

1.1 Alternatives to PFAS

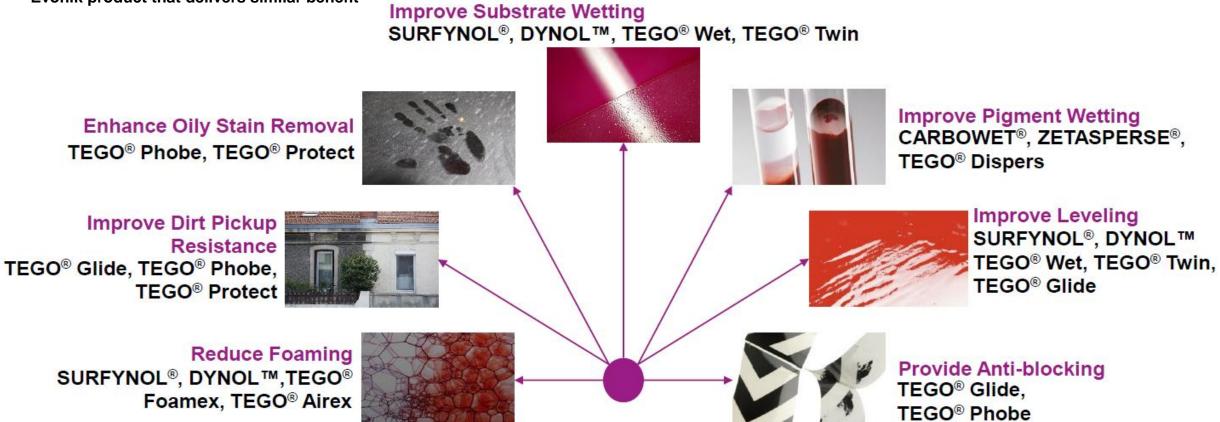
1.2 Alternatives to APEOs

- 4.1 Grinding step elimination (E2D
- 4.2 Faster curing: UV & LED
- 4.3 Universal inks dispersant
- 4.4 Universal substrate primers (inks)
- 4.5 Pigment dispersion optimization
- 4.6 Multifunctional additives
- 4.7 Formulating to reduce CO₂

- 5.1 Burnish resitance
- 5.2 Scratch resistance (high-gloss)
- 5.3 Scratch resistance (matte & deep matte)
- **5.4 Water resistance**
- 5.5 Mar resistance (wood coatings)
- **5.6 Anti-corrosion protection**
- 5.7 Thermal insulation coatings

6. Sustainable feedstocks

- 6.1 Bio-based wetting & dispersing agents
- 6.2 Bio-based defoamers & deaerators



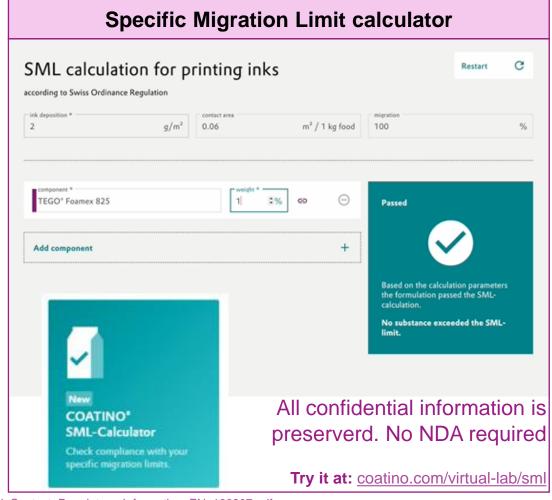
1.1. Alternatives to PFAS:

Fluorosurfactant replacements

Leaend:

- Fluorosurfactant chemistry benefit
- Evonik product that delivers similar benefit

For more product information, including TDS, SDS and formulation guides check: coatino.com/products



2.1. Food contact portfolio & support

Comprehensive regulatory coverage

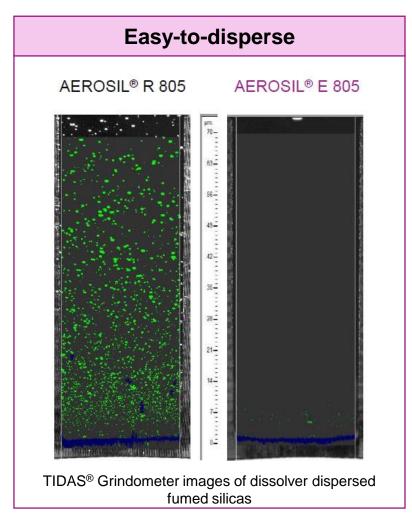
- Swiss Ordinance ANNEX 10 (Lists A & B)
- 21 CFR FDA
 - 175.105 and 175.300
 - 176.170 and 176.180
- BfR XIV and XV (German ink ordinance)
- Mercosur
- Nestle
- Regulation (EU) 10/2011
- EuPIA
- China national food safety standard
- Japanese positive list for direct food contact

Download the product regulatory guide: https://products.evonik.com/assets/68/07/Product_Selector_Guide_Food_Contact_Regulatory_Information_EN_196807.pdf

2.2. Eco-labeling & regulatory support

Our global team of experts monitors regulations around the world to help customers navigate the regulatory complexities.

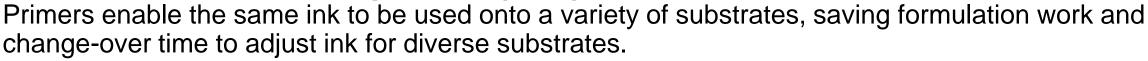
E-learning, regulatory-based product search, chemical inventory status and more at: coating-additives.com/en/responsibility/regulatory-guidance



Heavy metals others

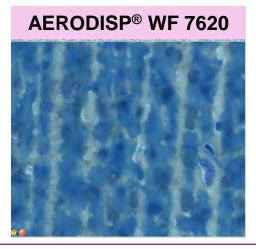
4.1. Grinding step elimination (E2D)

AEROSIL® E: Easy-to-disperse rheology modifiers that require less energy to incorporate.



For more product information, including TDS, SDS and formulation guides check: coatino.com/products

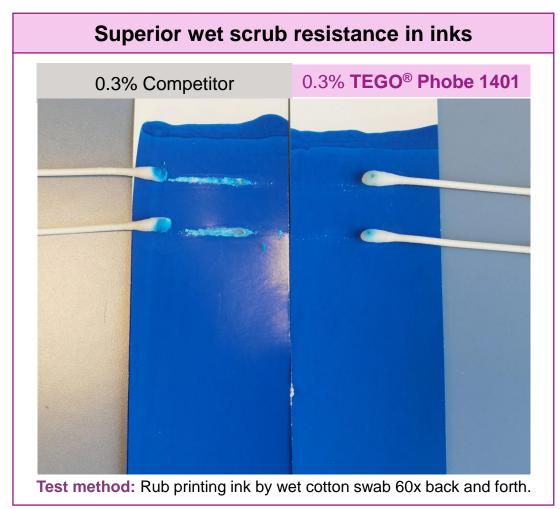
4.4. Universal substrate primers (inks)

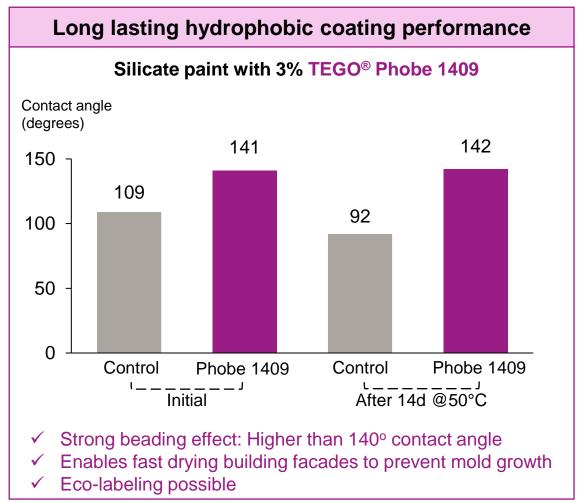

Non-siloxane and short chain siloxanes offer great re-coatability

- Non-siloxane and short chain siloxane surfactants are good options for primers because of their great recoatability.
- Wax and fluorinated surfactants need to be avoided.
- Product recommendations:
 - ✓ TEGO® WET 270
 - ✓ TEGO® Glide B 1484.
 - ✓ SURFYNOL®
 - ✓ DYNOL®

Silica dispersions are effective in various substrates

- Fumed silica dispersion shows great efficacy in improving edge definition and dot accuracy in various substrates:
 - ✓ Quick ink drops absorption while locking the colorants with brilliant colors.
 - Increase dot gain and wetting performance on non-absorbent substrates.
- Product recommendations:




For more product information, including TDS, SDS and formulation guides check: coatino.com/products

5.4. Water Resistance

TEGO® Phobe: Enables long-lasting and resilient hydrophobic performance in coatings and inks.

For more product information, including TDS, SDS and formulation guides check: coatino.com/products

6.1. Wetting & dispersing agents containing bio-based raw materials

Bio-based content from non-food sources, leveraging responsible forestry and bio-mass suppliers

Product	Biobased content (wt.%)	Chemical description	Potential applications
LIPOTIN® DB	100%	Soya lecithin	Wetting & intermediate pigment stabilization in SB direct grinds or resin-containing dispersions; provides pseudoplastic flow behavior
TEGO® COLOR AID 7060	77%	Tall-oil fatty acid amide amine	Compatibilizer for universal colorants (all pigment types) in SB alkyd base paints; minimal impact on dry time
TEGO® Dispers 1010	95%	Polyester w/ pigment- affinic groups	Dispersing all pigments in low polarity SB/HS/100% direct grinds or resin-free pigment concentrates; leads to Newtonian flow behavior
TEGO® Dispers 652	70%	Fatty acid derivative	Dispersing inorganic pigments & fillers in SB/HS/100%; use in direct grinds, resincontaining or resin-free dispersions
TEGO® Dispers 740 W	35%	Nonionic fatty acid derivative	Improves long term stability and colorant acceptance; use in WB resin-free pigment dispersions or as a co-additive in base paints

For more product information, including TDS, SDS and formulation guides check: coatino.com/products

6.2. Defoamers & deaerators containing bio-based raw materials

Bio-based content from non-food sources, leveraging responsible forestry and bio-mass suppliers

Product	Bio content	Chemical description	Functionality	System	Application
TEGO® Airex 921	57%	Polyester polyether mixture, silicone free	Deaeration in pigmented or clear formulations	Radiation-curable	Coatings, Inks & Varnishes
TEGO® Airex 922	62%	Organic polymers, silicone free	Deaeration in pigmented or clear coatings	SB/HS/100% solids	Floor & Industrial
TEGO® Airex 944	25%	Mixture of organic polymers & siloxanes	Defoaming & deaeration of pigmented coatings	SB/HS/100% solids	Floor & spray-applied industrial
TEGO® Airex 990	50%	Mixture of organic polymers & siloxanes	Deaeration in pigmented or clear coatings	SB/HS/100% solids	Floor & spray-applied industrial
TEGO® Airex 991	63%	Mixture of organic polymers & siloxanes	Defoaming & deaeration of pigmented coatings	SB/HS/100% solids	Floor & spray-applied industrial
TEGO® Foamex 18	98%	Hydrophobic organic polymer & particles	Letdown defoamer	Waterborne	Decorative paints
TEGO® Foamex 832	50%	Mixture of polyether & triglyceride	Defoaming of pigmented, compatible grind defoamer	Waterborne	Coatings & inks
TEGO® Foamex 8850	98%	Compound based on triglyceride, silica-free	Defoaming of pigmented formulations; use in letdown or as post-addition; broad food contact compliances	Waterborne	Printing inks
TEGO® Foamex 8820	55%	Based on vegetable oils	Defoaming of pigmented formulations; add in grind or letdown stage; broad food contact compliances	Waterborne	Coatings & inks

For more product information, including TDS, SDS and formulation guides check: coatino.com/products

Conclusions

- Sustainability is a complex subject
- Sustainable development is a partnership
- Additives can also play a role
- A journey... that we can take together

Photo: Stuart Hayes

